

Thermal Expansion Effects In Beryllium Mirrors

Kong Ha
Jackson & Tull
301-286-9348

Chuck Perrygo
Swales Aerospace
301-902-4296

☐ Tasked to:

- Look at thermal expansion effects in beryllium mirrors
- Generate typical deformed mirror shapes for analyzing mirror figure control using low number of actuators

■ Investigated:

- Beryllium CTE data from MSFC
- Relationship between radius of curvature change (RoC), change in sagitta, and bulk thermal expansion between mirror segments
- Analyzed mirror deformations due to CTE non-homogeneity within in a single mirror segment

Beryllium CTE Decreases Significantly NGS **At Low Temperatures**

Allowable Bulk Thermal Expansion

NGST

RoC + RoC

Goddard Space Flight Cente

RoC = Change in radius of curvature

RoC = RoC x_T

Z = Change in sagitta

RoC $Z \times 8 \times (RoC/D)^2$

For RoC = 20 m & D = 2 m, RoC/ Z = 800

 $WFE_{PV} = 2 X Z$

For WFE_{PV} $0.1 \mu m$, $Z 0.05 \mu m$

 $RoC = Z X RoC / Z 40 \mu m$

 $_{T} = RoC/RoC 2E-6$

Maximum allowable bulk thermal strain difference between mirror segments is 2E-6

Matching Segment RoC Requires Cryo-Figuring or Mirror Shape Actuators

NGST

Goddard Space Flight Cente

☐ Scenario: Mirror segments figures measured at T_{FIG} & used at T_{OP}

$$T = \int_{T_{FIG}}^{T_{OP}} CTE(T) dT$$

CTE(T) dT 1E-3 for
$$T_{FIG} = 295K \& T_{OP} = 50K$$

- → 500X larger than maximum thermal strain differential of 2E-6, but acceptable if uniform and repeatable across all mirror segments
- What is impact of variations in parameters?

Must cryo-figure or correct figure with actuators

Single Mirror Segment Thermal Deformation Analysis

NGST

Goddard Space Flight Center

- NASTRAN FEM analysis
 - 2 m X 2 m X 4 mm with 20 m RoC
 - 40 X 40 quadrilateral plate elements
- BNQK Mounting (BNQK = Bely Not Quite Kinematic)
 - Constrained at 4 points with XYZ + XZ + Z + Z constraint directions (Z-axis normal to mirror surface
 - Over constrained in Z-direction
 - Extra Z-direction constraint represents an actuator at that point enforcing zero out-of-plane motion
- ☐ Thermal load: CTE = 1E-5 K^{-1} & T = 1K
 - Represents thermal load of:

1K T at 295K

or

1% variation in integrated CTE over temperature change of 295 to 50K

Effect of Temperature or CTE Variation Within a Beryllium Mirror Segment

NGST

* CTE = 1E-5 K⁻¹ → Thermal distortions valid for 1°K T @ 295K or 1% CTE variation combined with 295 to 50K T

Effect of Temperature or CTE Variation Within a Beryllium Mirror Segment

NGST

Goddard Space Flight Center

* CTE = 1E-5 K⁻¹ → Thermal distortions valid for 1°K T @ 295K or 1% CTE variation combined with 295 to 50K T

Perrygo 09-Oct-97

- Goddard Space Flight Center
 - □ Bulk temperature change effects
 - Thermal strain difference between mirror segments must be < 2E-5 to keep WFE_{PV} < 0.05 μ m due to relative RoC changes
 - Thermal strain difference of <2E-5 very likely not achievable due to segmentto-segment variations in bulk CTE or T_{FIG}
 - Therefore, cryo-figuring or actuator correction required
 - Effects due to variation of CTE within a mirror segment
 - Mirror surface errors highly dependent on how CTE varies spatially
 - Believe hoop stress is reason for greatly increased thermal deformations in some cases
 - Mirror with higher ratio of bending stiffness to in-plane stiffness (isogrid or sandwich plate design) should be less sensitive to CTE variations
 - Additional study required to understand range of deformations possible and if deformations are correctable with sparse actuator array